This material (including images) is copyrighted!. See my copyright notice for fair use practices. Select the photographs to display the original source in another window.

In order to accurately describe how things move, you need to be careful in how you describe the motion and the terms you use. Scientists are usually very careful about the words they use to explain something because they want to accurately represent nature. Language can often be imprecise and as you know, statements can often be misinterpreted. Because the goal of science is to find the single true nature of the universe, scientists try to carefully choose their words to accurately represent what they see. That is why scientific papers can look so “technical” (and even, introductory astronomy textbooks!)

When you think of motion, you may first think of something moving at a uniform speed. The speed = (the distance travelled)/(the time it takes). Because the distance is in the top of the fraction, there is a direct relation between the speed and the distance: the greater the distance travelled in a given time, the greater is the speed. However, there is the smaller the time it takes to cover a given distance, the greater the speed must be.

To more completely describe all kinds of changes in motion, you also need to consider the direction along with the speed. For example, a ball thrown upward at the same speed as a ball thrown downward has a different motion. This inclusion of direction will be particularly important when you look at an object orbiting a planet or star. They may be moving at a uniform speed while their direction is constantly changing. The generalization of speed to include direction is called velocity. The term velocity includes both the numerical value of the speed and the direction something is moving.


an inverse relation between time and speed (time is in the bottom of the fraction):
Order Now on