Psychometric theories have generally sought to understand the structure of intelligence: What form does it take, and what are its parts, if any? Such theories have generally been based on and established by data obtained from tests of mental abilities, including analogies (e.g., lawyer is to client as doctor is to __), classifications (e.g., Which word does not belong with the others? robin, sparrow, chicken, blue jay), and series completions (e.g., What number comes next in the following series? 3, 6, 10, 15, 21,_).

Psychometric theories are based on a model that portrays intelligence as a composite of abilities measured by mental tests. This model can be quantified. For example, performance on a number-series test might represent a weighted composite of number, reasoning, and memory abilities for a complex series. Mathematical models allow for weakness in one area to be offset by strong ability in another area of test performance. In this way, superior ability in reasoning can compensate for a deficiency in number ability.

One of the earliest of the psychometric theories came from the British psychologist Charles E. Spearman (1863–1945), who published his first major article on intelligence in 1904. He noticed what may seem obvious now—that people who did well on one mental-ability test tended to do well on others, while people who performed poorly on one of them also tended to perform poorly on others. To identify the underlying sources of these performance differences, Spearman devised factor analysis, a statistical technique that examines patterns of individual differences in test scores. He concluded that just two kinds of factors underlie all individual differences in test scores. The first and more important factor, which he labeled the “general factor,” or g, pervades performance on all tasks requiring intelligence. In other words, regardless of the task, if it requires intelligence, it requires g. The second factor is specifically related to each particular test. For example, when someone takes a test of arithmetical reasoning, his performance on the test requires a general factor that is common to all tests (g) and a specific factor that is related to whatever mental operations are required for mathematical reasoning as distinct from other kinds of thinking. But what, exactly, is g? After all, giving something a name is not the same as understanding what it is. Spearman did not know exactly what the general factor was, but he proposed in 1927 that it might be something like “mental energy.”

reasoning and memory abilities for a complex series
Order Now on customessaymasters.com